
JavaScript

JavaScript is the scripting language of the Web.

JavaScript is used in millions of Web pages to add functionality, validate forms, detect browsers, and
much more.
Introduction to JavaScript
JavaScript is used in millions of Web pages to improve the design, validate forms, detect browsers, create
cookies, and much more.

JavaScript is the most popular scripting language on the Internet, and works in all major browsers, such as
Internet Explorer, Mozilla Firefox, and Opera.
What is JavaScript?

JavaScript gives HTML designers a programming tool - HTML authors are normally not
programmers, but JavaScript is a scripting language with a very simple syntax! Almost anyone can
put small "snippets" of code into their HTML pages
JavaScript can put dynamic text into an HTML page - A JavaScript statement like this:
document.write("<h1>" + name + "</h1>") can write a variable text into an HTML page
JavaScript can react to events - A JavaScript can be set to execute when something happens,
like when a page has finished loading or when a user clicks on an HTML element
JavaScript can read and write HTML elements - A JavaScript can read and change the content
of an HTML element
JavaScript can be used to validate data - A JavaScript can be used to validate form data before
it is submitted to a server. This saves the server from extra processing
JavaScript can be used to detect the visitor's browser - A JavaScript can be used to detect the
visitor's browser, and - depending on the browser - load another page specifically designed for that
browser

� JavaScript was designed to add interactivity to HTML pages
�
�

JavaScript is a scripting language
A scripting language is a lightweight programming language

� JavaScript is usually embedded directly into HTML pages
�
�

JavaScript is an interpreted language (means that scripts execute without preliminary compilation)
Everyone can use JavaScript without purchasing a license

Java and JavaScript are two completely different languages in both concept and design!
Java (developed by Sun Microsystems) is a powerful and much more complex programming language - in
the same category as C and C++.
What can a JavaScript Do ?

JAVASCRIPT

�

�

�

�

�

�

TechByWebCoder

@techbywebcoder

information on the visitor's computer.

Variables are "containers" for storing information.

JavaScript variables are used to hold values or expressions.

A variable can have a short name, like x, or a more descriptive name, like carname.

Rules for JavaScript variable names:

�
�

Variable names are case sensitive (y and Y are two different variables)
Variable names must begin with a letter or the underscore character

Note: Because JavaScript is case-sensitive, variable names are case-sensitive.

Example
A variable's value can change during the execution of a script. You can refer to a variable by its name to
display or change its value.
<html>
<body>
<script type="text/javascript">
var firstname;
firstname="Welcome";
document.write(firstname);
document.write("
");
firstname="XYZ";
document.write(firstname);
</script>

<p>The script above declares a variable,
assigns a value to it, displays the value, change the value,
and displays the value again.</p>

</body>
</html>
Output :

Welcome
XYZ
The script above declares a variable, assigns a value to it, displays the value, change the value, and
displays the value again.

 - A JavaScript can be used to store and retrieve � JavaScript can be used to create cookies

JavaScript Variables

TechByWebCoder

@techbywebcoder

have the same effect as:

If you redeclare a JavaScript variable, it will not lose its original value.

Creating variables in JavaScript is most often referred to as "declaring" variables.

You can declare JavaScript variables with the var statement:

After the execution of the statements above, the variable x will hold the value 5, and
the value Scorpio.
Note: When you assign a text value to a variable, use quotes around the value.

Assigning Values to Undeclared JavaScript Variables
If you assign values to variables that have not yet been declared, the variables will automatically be
declared.

These statements:

After the declaration shown above, the variables are empty (they have no values yet).

However, you can also assign values to the variables when you declare them:

 will hold

Redeclaring JavaScript Variables

Declaring (Creating) JavaScript Variables

var x=5;
var x;

var x;
var carname;

x=5;
carname="Scorpio";

var x=5;
var carname="Scorpio";

var x=5;
var carname="Scorpio";

ca rname

TechByWebCoder

@techbywebcoder

After the execution of the statements above, the variable x will still have the value of 5. The value of x is
not reset (or cleared) when you redeclare it.

TechByWebCoder

@techbywebcoder

The operator = is used to assign values.

The operator + is used to add values.

The assignment operator = is used to assign values to JavaScript variables.

The arithmetic operator + is used to add values together.

As with algebra, you can do arithmetic operations with JavaScript variables:

Numbers - are values that can be processed and calculated. You don't enclose them in quotation
marks. The numbers can be either positive or negative.
Strings - are a series of letters and numbers enclosed in quotation marks. JavaScript uses the string
literally; it doesn't process it. You'll use strings for text you want displayed or values you want
passed along.
Boolean (true/false) - lets you evaluate whether a condition meets or does not meet specified
criteria.
Null - is an empty value. null is not the same as 0 -- 0 is a real, calculable number, whereas null is
the absence of any value.

Data Types

TYPE EXAMPLE

Numbers Any number, such as 17, 21, or 54e7

Strings

Boolean

Null

"Greetings!" or "Fun"

Either true or false

A special keyword for exactly that – the null value (that is, nothing)

DataTypes

JavaScript Operators

y=5;
z=2;
x=y+z;

y=x-5;
z=y+5;

�

�

�

�

JavaScript Arithmetic

TechByWebCoder

@techbywebcoder

+
-
*
/

%
++
--

=
+=
-=
*=
/=

%=

x=y
x+=y
x-=y
x*=y
x/=y

x%=y

Addition
Subtraction
Multiplication
Division
Modulus (division remainder)
Increment
Decrement

The value of x, after the execution of the statements above is 7.
JavaScript Arithmetic Operators

Arithmetic operators are used to perform arithmetic between variables and/or values.

x=y+2
x=y-2
x=y*2
x=y/2

x=y%2
x=++y
x=--y

x=x+y
x=x-y
x=x*y
x=x/y

x=x%y

Assignment operators are used to assign values to JavaScript variables.

Given that and y=5, the table below explains the assignment operators:

The + operator can also be used to add string variables or text values together.

To add two or more string variables together, use the + operator.

Given that , the table below explains the arithmetic operators:

x=5
x=15
x=5

x=50
x=2
x=0

x=7
x=3

x=10
x=2.5
x=1
x=6
x=4

The + Operator Used on Strings

JavaScript Assignment Operators

x=10

Operator

txt1="What a very";
txt2="nice day";
txt3=txt1+txt2;

y=5

Operator Description

Example Same As

Example Result

Result

TechByWebCoder

@techbywebcoder

The rule is:

If you add a number and a string, the result will be a string.

JavaScript Comparison and Logical Operators

Comparison and Logical operators are used to test for true or false.

Look at these examples:

or insert a space into the expression:

After the execution of the statements above, the variable txt3 contains:

"What a very nice day"

Adding Strings and Numbers

After the execution of the statements above, the variable txt3 contains "What a verynice day".

To add a space between the two strings, insert a space into one of the strings:

x=5+5;
document.write(x);

x="5"+"5";
document.write(x);
x=5+"5";
document.write(x);
x="5"+5;
document.write(x);

txt1="What a very";
txt2="nice day";
txt3=txt1+" "+txt2;

txt1="What a very ";
txt2="nice day";
txt3=txt1+txt2;

TechByWebCoder

@techbywebcoder

==
===

!=
>
<

>=
<=

&&
||
!

and
or

not

is equal to
is exactly equal to (value and type)

is not equal
is greater than
is less than
is greater than or equal to
is less than or equal to

Logical operators are used to determine the logic between variables or values.

Given that , the table below explains the logical operators:

x==8 is false
x===5 is true
x==="5" is
false
x!=8 is true
x>8 is false
x<8 is true
x>=8 is false
x<=8 is true

(x < 10 && y > 1) is true
(x==5 || y==5) is false
!(x==y) is true

You will learn more about the use of conditional statements in the next chapter of this tutorial.
Logical Operators

JavaScript also contains a conditional operator that assigns a value to a variable based on some condition.

Comparison operators can be used in conditional statements to compare values and take action depending
on the result:

Comparison operators are used in logical statements to determine equality or difference between variables
or values.

Given that , the table below explains the comparison operators:

How Can it be Used

Conditional Operator

Comparison Operators

x=6 and y=3

Operator

x=5

Operator Description

if (age<18) document.write("Too young");

Description

Example

Example

TechByWebCoder

@techbywebcoder

If the variable has the value of "PRES", then the variable
"Dear President " else it will be assigned "Dear".
Conditional Statements
Very often when you write code, you want to perform different actions for different decisions. You can
use conditional statements in your code to do this.
In JavaScript we have the following conditional statements:

 will be assigned the value

You should use the if statement if you want to execute some code only if a specified condition is true.
Syntax

Note that if is written in lowercase letters. Using uppercase letters (IF) will generate a JavaScript error!
Example 1
<script type="text/javascript">
//Write a "Good morning" greeting if
//the time is less than 10
var d=new Date();
var time=d.getHours();

�
�
�
�

if statement - use this statement if you want to execute some code only if a specified condition is
true
if...else statement - use this statement if you want to execute some code if the condition is true
and another code if the condition is false
if...else if....else statement - use this statement if you want to select one of many blocks of code to
be executed
switch statement - use this statement if you want to select one of many blocks of code to be
executed

if (
{
code to be executed if condition is true

}

If Statement

Syntax variablename=(condition)?value1:value2

Example
greeting=(visitor=="PRES")?"Dear President ":"Dear ";

visitor g reeting

condition) TechByWebCoder

@techbywebcoder

 When variables you must always use two equals signs next to each other (==)!

Notice that there is no ..else.. in this syntax. You just tell the code to execute some code
.

If you want to execute some code if a condition is true and another code if the condition is not true, use
the if....else statement.
Syntax

if (
{
code to be executed if condition is true

}
else
{
code to be executed if condition is not true

}

specified condition is true

If...else Statement

if (time<10)
{
document.write("Good morning");
}
</script>

Example 2
<script type="text/javascript">
//Write "Lunch-time!" if the time is 11
var d=new Date();
var time=d.getHours();

if (time==11)
{
document.write("Lunch-time!");
}
</script>

Note: comparing

Example
<script type="text/javascript">
//If the time is less than 10,
//you will get a "Good morning" greeting.
//Otherwise you will get a "Good day" greeting.
var d = new Date();

only if the

condition)

You should use the if....else if...else statement if you want to select one of many sets of lines to execute.
Syntax

if (
{
code to be executed if condition1 is true

}
else if (
{

code to be executed if condition2 is true

}
else
{
code to be executed if condition1 and

If...else if...else Statement

var time = d.getHours();

if (time < 10)
{
document.write("Good morning!");
}
else
{
document.write("Good day!");
}
</script>

}

Example
<script type="text/javascript">
var d = new Date()
var time = d.getHours()
if (time<10)
{
document.write("Good morning");
}
else if (time>10 && time<16)
{
document.write("Good day");
}
else

condition2 are not true

condition1)

condition2)

TechByWebCoder

@techbywebcoder

You should use the switch statement if you want to select one of many blocks of code to be executed.
Syntax
switch(n)
{
case 1:

This is how it works: First we have a single expression n (most often a variable), that is evaluated once.
The value of the expression is then compared with the values for each case in the structure. If there is a
match, the block of code associated with that case is executed. Use break to prevent the code from
running into the next case automatically.
Example
<script type="text/javascript">
//You will receive a different greeting based
//on what day it is. Note that Sunday=0,
//Monday=1, Tuesday=2, etc.
var d=new Date();
theDay=d.getDay();
switch (theDay)
{
case 5:

}

break;
case 2:

break;
default:
 code to be executed if n is

{
document.write("Hello World!");
}
</script>
The JavaScript Switch Statement

document.write("Finally Friday");
break;

case 6:
document.write("Super Saturday");
break;

case 0:
document.write("Sleepy Sunday");

execute code block 1

execute code block 2

different from case 1 and 2

TechByWebCoder

@techbywebcoder

The for loop is used when you know in advance how many times the script should run.

Syntax

Very often when you write code, you want the same block of code to run over and over again in a row.
Instead of adding several almost equal lines in a script we can use loops to perform a task like this.

In JavaScript there are two different kind of loops:

�
�

- loops through a block of code a specified number of times
- loops through a block of code while a specified condition is true

Explanation: The example below defines a loop that starts with i=0. The loop will continue to run as long
as is less than, or equal to 10. will increase by 1 each time the loop runs.

The increment parameter could also be negative, and the <= could be any comparing statement.

for
while

The for Loop

i

N o t e :

i

<html>
<body>
<script type="text/javascript">
var i=0;
for (i=0;i<=10;i++)
{

for (var=startvalue;var<=endvalue;var=var+increment)
{ }

code to be executed

Exa mp le

break;

default:
document.write("I'm looking forward to this weekend!");

}
</script>

JavaScript Controlling(Looping) Statements

Loops in JavaScript are used to execute the same block of code a specified number of times or while
a specified condition is true.
JavaScript Loops

TechByWebCoder

@techbywebcoder

The while loop is used when you want the loop to execute and continue executing while the specified
condition is true.

 The <= could be any comparing statement.

Explanation: The example below defines a loop that starts with i=0. The loop will continue to run as long
as is less than, or equal to 10. i will increase by 1 each time the loop runs. i

<html>

while (var<=endvalue)
{ }

code to be executed

Note:

Exa mp le

document.write("The number is " + i);
document.write("
");
}
</script>
</body>
</html>

Result

The number is 0
The number is 1
The number is 2
The number is 3
The number is 4
The number is 5
The number is 6
The number is 7
The number is 8
The number is 9
The number is 10

JavaScript While Loop

Loops in JavaScript are used to execute the same block of code a specified number of times or while
a specified condition is true.
The while loop

TechByWebCoder

@techbywebcoder

JAVASCRIPT Notes

The do...while loop is a variant of the while loop. This loop will always execute a block of code ONCE,
and then it will repeat the loop as long as the specified condition is true. This loop will always be
executed at least once, even if the condition is false, because the code is executed before the condition is
tested.

do { } while
(var<=endvalue);

code to be executed

Example

<html>
<body>
<script type="text/javascript">

<body>
<script type="text/javascript">
var i=0;
while (i<=10)
{
document.write("The number is " + i);
document.write("
");
i=i+1;
}
</script>
</body>
</html>

Result

The number is 0
The number is 1
The number is 2
The number is 3
The number is 4
The number is 5
The number is 6
The number is 7
The number is 8
The number is 9
The number is 10

The do...while Loop

TechByWebCoder

@techbywebcoder

There are two special statements that can be used inside loops: break and continue.
Break
The break command will break the loop and continue executing the code that follows after the loop (if
any).

Exa mp le

<html>
<body>
<script type="text/javascript">
var i=0;
for (i=0;i<=10;i++)
{
if (i==3)
{
break;
}
document.write("The number is " + i);
document.write("
");
}
</script>
</body>

var i=0;
do
{
document.write("The number is " + i);
document.write("
");
i=i+1;
}
while (i<0);
</script>
</body>
</html>

Result

The number is 0

JavaScript Break and Continue
There are two special statements that can be used inside loops: break and continue.
JavaScript break and continue Statements

TechByWebCoder

@techbywebcoder

The continue command will break the current loop and continue with the next value.

Exa mp le

</html>

Result

The number is 0
The number is 1
The number is 2

Continue

<html>
<body>
<script type="text/javascript">
var i=0
for (i=0;i<=10;i++)
{
if (i==3)
{
continue;
}
document.write("The number is " + i);
document.write("
");
}
</script>
</body>
</html>

Result

The number is 0
The number is 1
The number is 2
The number is 4
The number is 5
The number is 6
The number is 7
The number is 8
The number is 9
The number is 10

TechByWebCoder

@techbywebcoder

If the line: alert("Hello world!!") in the example above had not been put within a function, it would have
been executed as soon as the line was loaded. Now, the script is not executed before the user hits the
button. We have added an onClick event to the button that will execute the function displaymessage()
when the button is clicked.

A function (also known as a method) is a self-contained piece of code that performs a particular
"function". You can recognise a function by its format - it's a piece of descriptive text, followed by
open and close brackets.A function is a reusable code-block that will be executed by an event, or
when the function is called.

To keep the browser from executing a script when the page loads, you can put your script into a

function.

A function contains code that will be executed by an event or by a call to that function.

You may call a function from anywhere within the page (or even from other pages if the function is
embedded in an external .js file).
Functions can be defined both in the <head> and in the <body> section of a document. However,

to
assure that the function is read/loaded by the browser before it is called, it could be wise to put itin the
<head> section.
Example <html>
<head>
<script type="text/javascript">
function displaymessage()
{
alert("Hello World!");
}
</script>
</head>
<body>
<form>
<input type="button" value="Click me!"
onclick="displaymessage()" >
</form>
</body>
</html>

JavaScript Functions

TechByWebCoder

@techbywebcoder

The syntax for creating a function is:

You will learn more about JavaScript events in the JS Events chapter.
How to Define a Function

The function below should return the product of two numbers (a and b):

When you call the function above, you must pass along two parameters:

The return statement is used to specify the value that is returned from the function.

So, functions that are going to return a value must use the return statement.

Example

 Do not forget about the importance of capitals in JavaScript! The word function must be written in
lowercase letters, otherwise a JavaScript error occurs! Also note that you must call a function with the
exact same capitals as in the function name.
The return Statement

var1, var2, etc are variables or values passed into the function. The { and the } defines the start and end of
the function.

A function with no parameters must include the parentheses () after the function name:

functionname

some code

}

functionname(var1,var2,...,varX)

some code

}

function
{

Note:

function
{

Note:

function prod(a,b)
{
x=a*b;
return x;
}

product=prod(2,3);

()

TechByWebCoder

@techbywebcoder

The returned value from the prod() function is 6, and it will be stored in the variable called product.
The Lifetime of JavaScript Variables
When you declare a variable within a function, the variable can only be accessed within that function.
When you exit the function, the variable is destroyed. These variables are called local variables. You can
have local variables with the same name in different functions, because each is recognized only by the
function in which it is declared.
If you declare a variable outside a function, all the functions on your page can access it. The lifetime of
these variables starts when they are declared, and ends when the page is closed.
What is an Event?
Event Handlers

Event Handlers are JavaScript methods, i.e. functions of objects, that allow us as JavaScript
programmers to control what happens when events occur.
Directly or indirectly, an Event is always the result of something a user does. For example, we've already
seen Event Handlers like onClick and onMouseOver that respond to mouse actions. Another type of
Event, an internal change-of-state to the page (completion of loading or leaving the page). An onLoad
Event can be considered an indirect result of a user action.
Although we often refer to Events and Event Handlers interchangeably, it's important to keep in mind the
distinction between them. An Event is merely something that happens - something that it is initiated by
an Event Handler (onClick, onMouseOver, etc...).

The elements on a page which can trigger events are known as "targets" or "target elements," and we can
easily understand how a button which triggers a Click event is a target element for this event. Typically,
events are defined through the use of Event Handlers, which are bits of script that tell the browser what to
do when a particular event occurs at a particular target. These Event Handlers are commonly written as
attributes of the target element's HTML tag.

The Event Handler for a Click event at a form field button element is quite simple to understand:

<INPUT TYPE="button" NAME="click1" VALUE="Click me for fun!"
onClick="event_handler_code">

The event_handler_code portion of this example is any valid JavaScript and it will be executed when the
specified event is triggered at this target element. This particular topic will be continued in Incorporating
JavaScripts into your HTML pages.

There are "three different ways" that Event Handlers can be used to trigger Events or Functions.

Method 1 (Link Events):

TechByWebCoder

@techbywebcoder

Places an Event Handler as an attribute within an tag, like this:

 ...

You can use an Event Handler located within an tag to make either an image or a text link
respond to a mouseover Event. Just enclose the image or text string between the and the
 tags.

Whenever a user clicks on a link, or moves her cursor over one, JavaScript is sent a Link Event. One
Link Event is called onClick, and it gets sent whenever someone clicks on a link. Another link event is
called onMouseOver. This one gets sent when someone moves the cursor over the link.

You can use these events to affect what the user sees on a page. Here's an example of how to use link
events. Try it out, View Source, and we'll go over it.

<A HREF="javascript:void('')"
onClick="open('index.htm', 'links', 'height=200,width=200');">How to Use Link Events

The first interesting thing is that there are no <SCRIPT> tags. That's because anything that appears in the
quotes of an onClick or an onMouseOver is automatically interpreted as JavaScript. In fact, because
semicolons mark the end of statements allowing you to write entire JavaScripts in one line, you can fit an
entire JavaScript program between the quotes of an onClick. It'd be ugly, but you could do it.
Here are the three lines of interest:

1. Click on me!
2.

Click on me!

3. Click on me!

In the first example we have a normal <A> tag, but it has the magic onClick="" element, which says,
"When someone clicks on this link, run the little bit of JavaScript between my quotes." Notice, there's
even a terminating semicolon at the end of the alert. Question: is this required? NO.

Let's go over each line:

1. HREF="#" tells the browser to look for the anchor #, but there is no anchor "#", so the browser
reloads the page and goes to top of the page since it couldn't find the anchor.

2. <A HREF="javascript:void('')" tells the browser not to go anywhere - it "deadens" the link when
you click on it. HREF="javascript: is the way to call a function when a link (hyperlink or an
HREFed image) is clicked.

3. HREF="javascript:alert('Ooo, do it again!')" here we kill two birds with one stone. The default
behavior of a hyperlink is to click on it. By clicking on the link we call the window Method alert()
and also at the same time "deaden" the link.

TechByWebCoder

@techbywebcoder

The next line is

Mouse over me!

This is just like the first line, but it uses an onMouseOver instead of an onClick.

Method 2 (Actions within FORMs):

The second technique we've seen for triggering a Function in response to a mouse action is to place an
onClick Event Handler inside a button type form element, like this:

<FORM>
<INPUT TYPE="button" onClick="doSomething()">

</FORM>

While any JavaScript statement, methods, or functions can appear inside the quotation marks of an Event
Handler, typically, the JavaScript script that makes up the Event Handler is actually a call to a function
defined in the header of the document or a single JavaScript command. Essentially, though, anything that
appears inside a command block (inside curly braces {}) can appear between the quotation marks.
For instance, if you have a form with a text field and want to call the function checkField() whenever the
value of the text field changes, you can define your text field as follows:

<INPUT TYPE="text" onChange="checkField(this)">

Nonetheless, the entire code for the function could appear in quotation marks rather than a function call:

<INPUT TYPE="text" onChange="if (this.value <= 5) {
alert("Please enter a number greater than 5");

}">

To separate multiple commands in an Event Handler, use semicolons

<INPUT TYPE="text" onChange="alert(‘Thanks for the entry.’);
confirm(‘Do you want to continue?’);">

The advantage of using functions as Event Handlers, however, is that you can use the same Event Handler
code for multiple items in your document and, functions make your code easier to read and understand.
Method 3 (BODY onLoad & onUnLoad):

The third technique is to us an Event Handler to ensure that all required objects are defined involve the
onLoad and onUnLoad. These Event Handlers are defined in the <BODY> or <FRAMESET> tag of an
HTML file and are invoked when the document or frameset are fully loaded or unloaded. If you set a flag

TechByWebCoder

@techbywebcoder

within the onLoad Event Handler, other Event Handlers can test this flags to see if they can safely run,
with the knowledge that the document is fully loaded and all objects are defined. For example:

<SCRIPT>

var loaded = false;

function doit() {
// alert("Everything is \"loaded\" and loaded = " + loaded);
alert('Everything is "loaded" and loaded = ' + loaded);

}
</SCRIPT>

<BODY onLoad="loaded = true;">
-- OR --
<BODY onLoad="window.loaded = true;">

<FORM>

<INPUT TYPE="button" VALUE="Press Me"
onClick="if (loaded == true) doit();">

-- OR --
<INPUT TYPE="button" VALUE="Press Me"

onClick="if (window.loaded == true) doit();">
-- OR --

<INPUT TYPE="button" VALUE="Press Me"
onClick="if (loaded) doit();">

</FORM>
</BODY>

The onLoad Event Handler is executed when the document or frameset is fully loaded, which means that
all images have been downloaded and displayed, all subframes have loaded, any Java Applets and Plugins
(Navigator) have started running, and so on. The onUnLoad Event Handler is executed just before the
page is unloaded, which occurs when the browser is about to move on to a new page. Be aware that when
you are working with multiple frames, there is no guarantee of the order in which the onLoad Event
Handler is invoked for the various frames, except that the Event Handlers for the parent frame is invoked
after the Event Handlers of all its children frames -- This will be discussed in detail in Week 8.

Setting the bgColor Property

The first example allows the user to change the color by clicking buttons, while the second example
allows you to change colors by using drop down boxes.

Event Handlers

TechByWebCoder

@techbywebcoder

OBJECT

Button element

Checkbox

Clickable ImageMap area

Document

Form

Framesets

Hypertext link

Image

EVENT

onAbort

DESCRIPTION

the user cancels loading of an image

input focus is removed from a form element (when the user clicks outside the field) or
focus is removed from a window
the user clicks on a link or form element

the value of a form field is changed by the user

an error happens during loading of a document or image

input focus is given to a form element or a window

once a page is loaded, NOT while loading

the user moves the pointer off of a link or clickable area of an image map

the user moves the pointer over a hypertext link

the user clears a form using the Reset button

the user selects a form element’s field

a form is submitted (ie, when the users clicks on a submit button)

the user leaves a page

onBlur

onClick

onChange

onError

onFocus

onLoad

onMouseOut

onMouseOver

onReset

onSelect

onSubmit

onUnload

Note: Input focus refers to the act of clicking on or in a form element or field. This can be done by
clicking in a text field or by tabbing between text fields.

Which Event Handlers Can Be Used

EVENT HANDLERS AVAILABLE

onClick, onMouseOver

onClick

onClick, onMouseOver, onMouseOut

onLoad, onUnload, onError

onSubmit, onReset

onBlur, onFocus

onClick, onMouseOver, onMouseOut

onLoad, onError, onAbort

TechByWebCoder

@techbywebcoder

Radio button

Reset button

Selection list

Submit button

TextArea element

Text element

Window

An array object is used to create a database-like structure within a script. Grouping data points
(array elements) together makes it easier to access and use the data in a script. There are methods
of accessing actual databases (which are beyond the scope of this series) but here we're talking
about small amounts of data.

An array can be viewed like a
column of data in a spreadsheet. The
name of the array would be the same
as the name of the column. Each
piece of data (element) in the array
is referred to by a number (index),
just like a row number in a column.

An array is an object. Earlier, I said
that an object is a thing, a collection
of properties (array elements, in this
case) grouped together.
You can name an array using the

same format as a variable, a function or an object. Remember our basic rules: The first
character cannot be a number, you cannot use a reserved word, and you cannot use spaces.
Also, be sure to remember that the name of the array object is capitalized, e.g. Array.
The JavaScript interpreter uses numbers to access the collection of elements (i.e. the data) in
an array. Each index number (as it is the number of the data in the array's index) refers to a
specific piece of data in the array, similar to an ID number. It's important to remember that
the index numbering of the data starts at "0." So, if you have 8 elements, the first element
will be numbered "0" and the last one will be "7."

Elements can be of any type: character string, integer, Boolean, or even another array. An
array can even have different types of elements within the same array. Each element in the

onClick onClick onBlur, onChange,

onFocus onClick onBlur, onChange,

onFocus, onSelect onBlur,

onChange, onFocus, onSelect

onLoad, onUnload, onBlur, onFocus

JavaScript Arrays

TechByWebCoder

@techbywebcoder

The size of an array is determined by either the actual number of elements it contains
or by actually specifying a given size. You don't need to specify the size of the array.
Sometimes, though, you may want to pre-set the size, e.g.:

var myCar = new Array(20);

That would pre-size the array with 20 elements. You might pre-size the array in order

to set
aside the space in memory.
Multidimensional Arrays
This type of an array is similar to parallel arrays. In a multidimensional array, instead
of creating two or more arrays in tandem as we did with the parallel array, we create
an array with several levels or "dimensions." Remember our example of a spreadsheet
with rows and columns? This time, however, we have a couple more columns.

Multidimensional arrays can be created in different ways. Let's look at one of these method.
First, we create the main array, which is similar to what we did with previous arrays.
var emailList = new Array();
Next, we create arrays for elements of the main array:

array is accessed by placing its index number in brackets, i.e. myCar[4]. This would mean
that we are looking for data located in the array myCar which has an index of "4." Since the
numbering of an index starts at "0," this would actually be the fifth index. For instance, in the
following array,
var myCar = new Array("Chev","Ford","Buick","Lincoln","Truck");
alert(myCar[4])
the data point with an index of "4" would be Truck. In this example, the indexes are
numbered as follows: 0=Chev, 1=Ford, 2=Buick, 3=Lincoln, and 4=Truck. When creating
loops, it's much easier to refer to a number than to the actual data itself.
The Size of the Array

TechByWebCoder

@techbywebcoder

You could also retrieve the information using something like:

var title = emailList[1][0]
var email = emailList[1][2]
alert("The e-mail address for the " + title +" is: " + email)

It would be written like this:

var vpEmail = emailList[1][2]
alert("The address is: "+ vpEmail)

1. We declared a variable, named it emailList, and initialized it with a
value of a new instance of an array.

2. Next, we created an array for each of the elements within the original
array. Each of the new arrays contained three elements.

3. Then we declared a variable named vpEmail and initialized it with the
value of the third element (lstevens@domain.com) of the second
element "[1]" of the array named emailList.

emailList[0] = new Array("President", "Paul Smith", "psmith@domain.com");
emailList[1] = new Array("Vice President", "Laura Stevens", "lstevens@domain.com");
emailList[2] = new Array("General Manager", "Mary Larsen", "mlarsen@domain.com");
emailList[3] = new Array("Sales Manager", "Bob Lark", "blark@domain.com");
In this script we created "sub arrays" or arrays from another level or "dimension." We used
the name of the main array and gave it an index number (e.g., emailList[0]). Then we created
a new instance of an array and gave it a value with three elements.
In order to access a single element, we need to use a double reference. For example, to get
the e-mail address for the Vice President in our example above, access the third element "[2]"
of the second element "[1]" of the array named emailList.

TechByWebCoder

@techbywebcoder

The length property returns the number of elements in an array. The format is
arrayName.length. The length property is particularly useful when using a loop to cycle
through an array. One example would be an array used to cycle banners:

var bannerImg = new Array();

bannerImg[0]="image-1.gif";
bannerImg[1]="image-2.gif";
bannerImg[2]="image-3.gif";

var newBanner = 0
var totalBan = bannerImg.length
function cycleBan() {

newBanner++
if (newBanner == totalBan) {

newBanner = 0
}
document.banner.src=bannerImg[newBanner]
setTimeout("cycleBan()", 3*1000)

}
window.onload=cycleBan;

This portion is then placed in the body where the banner is to be displayed:

Let's take a look and see what happened here:

Array Properties
length

TechByWebCoder

@techbywebcoder

4.

There are a total of five properties for the Array object. In addition to the length property
listed above, the others are:

1. constructor: Specifies the function that creates an object's prototype.
2. index: Only applies to JavaScript arrays created by a regular expression

match.
3. input: Only applies to JavaScript arrays created by a regular expression

match.
4. prototype: Used to add properties or methods.

)
b. When the value of the newBanner variable is equal to the variable totalBan (which is

the length of the array), it is then reset to "0". This allows the images to start the
cycle again, from the beginning.

c. The next statement uses the Document Object Method (DOM - we'll be taking a look
at that soon) to display the images on the Web page. Remember, we use the dot
operator to access the properties of an object. We also read the statement backwards,
i.e., "take the element from the array bannerImg, that is specified by the current
value of the variable newBanner, and place it in the src attribute located in the
element with the name attribute of banner, which is located in the document object."

d. We then used the setTimeout function to tell the script how long to display each
image. This is always measured in milliseconds so, in this case, the function
cycleBan is called every 3,000 milliseconds (i.e., every 3 seconds).

Finally, we used the window.onload statement to execute the function cycleBan as soon as
the document is loaded.

1. On the first line, we created a new instance of the array bannerImg, and gave it three data
elements. (Remember, we are only making a copy of the Array object here.)

2. Next, we created two variables: newBanner, which has a beginning value of zero; and
totalBan, which returns the length of the array (the total number of elements contained in the
array).

3. Then we created a function named cycleBan. This function will be used to create a loop to
cycle the images.

a. We set the newBanner variable to be increased each time the function cycles.
(Review: By placing the increment operator [" ++ "] after the variable [the
"operand"], the variable is incremented only after it returns its current value to the
script. For example, its beginning value is "0", so in the first cycle it will return a
value of "0" to the script and then its value will be increased by "1".

TechByWebCoder

@techbywebcoder

The other properties listed here are either more advanced or seldom used. For now, we'll
stick to the basics.

Hierarchy Objects

Object

Window

Properties

defaultStatu

s
frames
opener
parent
scroll
self
status
top
window

length
forward
go

Methods

alert
blur
close
confirm
focus
open
prompt
clearTimeout
setTimeout

back

Event Handlers

onLoad
onUnload
onBlur
onFocus

History none

Navigator appCodeName javaEnabled none
appName
appVersion
mimeTypes
plugins
userAgent

document alinkColor clear
close
open
write
writeln

none (the onLoad and onUnload event handlers
belong to the Window object. anchors

applets
area
bgColor
cookie
fgColor
forms
images
lastModified
linkColor
links
location
referrer
title

Javascript Object Hierarchy

TechByWebCoder

@techbywebcoder

Date none

vlinkColor

border
complete
height
hspace
lowsrc
name
src
vspace
width

action
elements
encoding
FileUpload
method
name
target

defaultValue
name
type
value

image

form

text

Built-in Objects

Array length

none

focus
blur
select

submit
reset

none

onSubmit
onReset

onBlur
onCharge
onFocus
onSelect

join
reverse
sort xx

getDate
getDay
getHours
getMinutes
getMonth
getSeconds
getTime
getTimeZoneoffset
getYear
parse
prototype
setDate
setHours
setMinutes
setMonth
setSeconds
setTime

none

none

TechByWebCoder

@techbywebcoder

String length
prototype

setYear
toGMTString
toLocaleString
UTC

anchor
big
blink
bold
charAt
fixed
fontColor
fontSize
indexOf
italics
lastIndexOf
link
small
split
strike
sub
substring
sup
toLowerCase
toUpperCase

Window

The following code creates an Array object called myCars:

var myCars=new Array();

There are two ways of adding values to an array (you can add as many values as you need to define as
many variables you require).
1:

var myCars=new Array();
myCars[0]="Saab";
myCars[1]="Volvo";
myCars[2]="BMW";

JavaScript Array Object

The Array object is used to store multiple values in a single variable.

Create an Array TechByWebCoder

@techbywebcoder

You could also pass an integer argument to control the array's size:

var myCars=new Array(3);
myCars[0]="Saab";
myCars[1]="Volvo";
myCars[2]="BMW";
2: var myCars=new Array("Saab","Volvo","BMW"); Note: If you specify numbers or true/false

values inside the array then the type of variables will be
numeric or Boolean instead of string.
Access an Array
You can refer to a particular element in an array by referring to the name of the array and the
index number. The index number starts at 0.

The following code line:

document.write(myCars[0]);

will result in the following output:

Saab

To modify a value in an existing array, just add a new value to the array with a specified index number:

myCars[0]="Opel";

Now, the following code line:

document.write(myCars[0]);

will result in the following output:

Opel

JavaScript Date Object

Modify Values in an Array

TechByWebCoder

@techbywebcoder

The Date object is also used to compare two dates.

The following example compares today's date with the 14th January 2010:

var myDate=new Date();
myDate.setFullYear(2010,0,14);
var today = new Date();
if (myDate>today)
{
alert("Today is before 14th January 2010");
}
else
{
alert("Today is after 14th January 2010");
}

JavaScript Math Object

The Date object is used to work with dates and times.

The following code create a Date object called myDate:

var myDate=new Date()

Note: The Date object will automatically hold the current date and time as its initial value!

Set Dates

We can easily manipulate the date by using the methods available for the Date object.

In the example below we set a Date object to a specific date (14th January 2010):

var myDate=new Date();
myDate.setFullYear(2010,0,14);
And in the following example we set a Date object to be 5 days into the future:

var myDate=new Date();
myDate.setDate(myDate.getDate()+5);
Note: If adding five days to a date shifts the month or year, the changes are handled automatically by the
Date object itself!
Compare Two Dates

Create a Date Object

TechByWebCoder

@techbywebcoder

The Math object allows you to perform mathematical tasks. The Math object includes several

mathematical constants and methods. Syntax for using properties/methods of Math: var

pi_value=Math.PI;
var sqrt_value=Math.sqrt(16);
Note: Math is not a constructor. All properties and methods of Math can be called by using Math as

an
object without creating it.
Mathematical Constants
JavaScript provides eight mathematical constants that can be accessed from the Math object.
These are: E, PI, square root of 2, square root of 1/2, natural log of 2, natural log of 10, base-2 log
of E, and base-10 log of E.

You may reference these constants from your JavaScript like this:

In addition to the mathematical constants that can be accessed from the Math object there are also several
methods available.

The following example uses the round() method of the Math object to round a number to the nearest
integer:

document.write(Math.round(4.7));

The code above will result in the following output:

5

Math.E
Math.PI
Math.SQRT2
Math.SQRT1_2
Math.LN2
Math.LN10
Math.LOG2E
Math.LOG10E

Math Object

Mathematical Methods TechByWebCoder

@techbywebcoder

The String object is used to manipulate a stored piece of text.

Examples of use:

The following example uses the length property of the String object to find the length of a string:

var txt="Hello world!";
document.write(txt.length);
The code above will result in the following output:

12

The following example uses the toUpperCase() method of the String object to convert a string to
uppercase letters:

var txt="Hello world!";
document.write(txt.toUpperCase());
The code above will result in the following output:

HELLO WORLD!

The following example uses the random() method of the Math object to return a random number between
0 and 1:

document.write(Math.random());

The code above can result in the following output:

0.4218824567728053

The following example uses the floor() and random() methods of the Math object to return a random
number between 0 and 10:

document.write(Math.floor(Math.random()*11));

The code above can result in the following output:

4

JavaScript String Object
String object

TechByWebCoder

@techbywebcoder

